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Abstract

Bi-element or layered targets have been used to obtain depth-of-penetration (DOP) data so that
performance of ceramic materials under ballistic impact can be evaluated. While the data have
been particularly useful for ranking ceramics as possible armor candidates, interpretation of the
data has been difficult and little insight into the dynamics and mechanisms of the penetration
process has been obtained from such data. Prior analytical work into the penetration mechanics
of ceramics by the authors included two important factors (i.e., a dynamic target interaction
resulting from pressure wave reflection at the interface between target elements and a
time-dependent damage mechanism describing the response of the ceramic material). In the
present work, a "size" effect, known to be associated with ceramic behavior, and the introduction
of a third process zone have been included in the analysis to address a portion of the variations
(scatter) in the DOP test data. The analysis now includes results of the weakest-link theory in
terms of the Weibull distribution and measured parameters for A120 3. Calculated results are
compared with the original data and prior analysis to provide relationships between all three
mechanisms and indicate the influence of the size effect on the data.
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1. Introduction

The use of semi-infinite, bi-element targets in depth-of-penetration (DOP) tests initially arose

from the need to determine the performance potential of ceramic materials under ballistic impact.

However, since ceramics exhibit complex damage responses, interpretation of DOP results for

ceramic/metal target combinations has been difficult. The previous work by Rupert and Grace

(1993) and Grace and Rupert (1993) had identified a dynamic effect referred to as a "density" effect

mechanism (Rupert and Grace 1994) for both metallic and ceramic appliques. This effect is the

result of a pressure wave reflecting from a higher density second element and its associated material

particle velocity, which moves back toward the penetrator. This motion enhances the penetration

rate in the first element with corresponding reduction in penetrator erosion rate. Thus, a greater

uneroded rod length reaches the bi-element interface, which produces greater penetration into the

second element. When a second element has the lower density, an opposite condition exists. The

relief wave moves material away from the penetrator, lowers penetration rates, increases rod erosion

rates, and lowers uneroded rod length. In that case, penetration into the second element may be

expected to be somewhat lower. This work demonstrates that significant target interactions are

present in addition to specific time-dependent damage mechanisms inherent in the ceramic response.

Through the analytical model (Grace and Rupert 1993; Grace 1993), the density effect and time-

dependent mechanisms were separated so that the role of each factor could be evaluated. Even so,

there appears to be some scatter in test results that could not be addressed by the inclusion of the

previously mentioned dynamic interactions. Thus, the current work extends the model by

introducing the Weibull (1939; 1951) distribution and a third process zone as initial steps in

interpreting the upper and lower performance limits bounding the scatter in ceramic data.

An experimental process used to evaluate a ceramic is the DOP test as described by Woolsey,

Mariano, and Kokidko (1989). Such tests make use of a well-characterized penetrator that is fired

into a ceramic/ metal layered target (i.e., bi-element target), where the second element (i.e., metal)

is sufficiently thick to be considered semi-infinite. The penetration depth (or DOP) is measured in

the metal that is typically rolled homogeneous armor (RHA). DOP results can be compared with
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penetration into a single-element, semi-infinite metal target. Quite often, DOP results show a

considerable degree of inherit scatter, even where the dimensional tolerances for the targets and

impact conditions are well controlled. A factor that can influence penetration in ceramics is strength.

It is well known that the strength of ceramic materials, unlike metals, is limited by the size of

inherent flaws through a Griffith's-type relationship (Griffith 1924). These flaws can vary

considerably in size. (In addition, failure in a stressed ceramic component follows the weakest link

theory, which states that failure is determined by the lowest stress at the most critical flaw that

initiates crack growth.) This phenomena yields a size dependence of stress referred to as "size"

effect (McClintock and Argon 1966). As a result, strengths tend to vary with ceramic thickness and

require statistical description of this strength variation (Jadaan et al. 1991). Since strength is an

important consideration in penetration, the variations in this parameter for ceramics need to be

considered in analyses of ballistic tests. The current work describes how the Weibull distribution

has been introduced into the previous penetration model (Rupert and Grace 1996) to describe the

ceramics intrinsic variation in performance and compares the new results with experimental DOP

data for A120 3.

2. Statement of the Problem

Previous results for A120 3IRHA targets impacted by a depleted uranium (DU) alloy penetrator

are shown in Figure 1 to include the data (circled points) reported by Woolsey, Mariano, and

Kokidko (1989) and the analysis of Grace and Rupert (1993). Woolsey identified four regions (as

shown in Figure 2) based on changes in the graphical appearance of the data when DOP results vs.

ceramic applique thickness are plotted. Grace and Rupert (1993) offered physical explanations as

to what would cause the DOP data to change within these four regions. In region I, a dynamic target

interaction effect is present and is the dominant defeat mechanism for thinner ceramic sections. The

significant performance gains in region II were explained in terms of the ceramic acting initially as

a nearly intact material. The slope of region II is determined by the introduction of the time-

dependent damage mechanisms resulting in a mixed solid/granular flow and the rate of transition

from mixed solid/granular flow to pure granular flow. Region II[ was defined as a region where pure
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granular flow becomes the dominant damage mechanism. Region IV is the termination phase where

the unconsumed portion of rod traveling at low velocity abruptly decelerates and stops.

In previous work, Rupert and Grace (1993) experimentally investigated an all-metal, bi-element

target of Ti alloy/RHA. These metallic targets exhibited similar behavior as that found in

ceramic/metal targets associated with region I (see Figure 3). Further, this effect persisted

throughout thickness increases mimicking regions II and 111. Since the Ti alloy properties are

essentially independent of thickness over the range of applique thickness tested in contrast to the

time-dependent strength that can occur in ceramics, the effect in the ceramic could not considered

to be an outgrowth of strength degradation. Further, reversing the order of materials in the metal

layers produced a slight reduction in the penetration rate and increased rod erosion rate. For these

particular metals, reversing the material order reversed the material densities significantly, but did

not change the strengths appreciably (see Figure 4). Thus, the observed effect was considered to be

associated with the dynamics of target interaction involving mismatch of densities at the metal/metal

interface.

In modeling bi-element ceramic/metal penetration, Grace and Rupert (1993) utilized both (1) the

density effect, as described previously, and (2) a time-dependent damage concept for the ceramic

(Curran et al. 1993; Cortrs et al. 1992). The introduction of damage functions, together with the

density effect, provided a penetration algorithm that produced the DOP performance envelopes for

the ceramic as shown in Figure 1 (solid lines). The details of the calculations provided physical

explanations for the regions as described in section 3.

Figure 1 also shows considerable scatter in the DOP test data that was not explained by the

previous penetration model dynamic analysis. Thus, the problem of interest here is to address the

variations in the data by taking into account, as a first step, the "size" effect described earlier together

with the associated Weibull distribution and the introduction of a third process zone. The influence

of these additional factors on the DOP performance envelope for A120 3, as previously illustrated in

Figure 1, is analyzed.
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3. Review of the Penetration Analysis

3.1 The Penetration Integral and Velocity Solutions. The analytical approach to the DOP

problem is an application of the nonsteady penetration development of Grace (1993). The theory

deals with the penetration of long-rod penetrators into monolithic, semi-infinite targets. The

application to DOP bi-element-type targets was provided by Grace and Rupert (1993). The

geometry of the bi-element target is shown in Figure 5. Impact conditions are rod impact velocity

v,, initial rod length Vo, and first-element thickness ao. The backup target, or second element, is

semi-infinite metal. To begin penetration of the second layer, the velocity v1 and rod length Q1 that

exist at the interface between targets must be determined. These quantities depend, of course, upon

rod length and velocity losses that occur during penetration through the first layer. For the

bi-element target, it is assumed that the total penetration PT in the overall target is the sum of that

through each element. This gives

PT = u u dl - f2 ( v u) dl, (1)

where u is the penetration rate, v is the penetrator velocity, and (u!(v - u)), and (u/(v - u)) 2 are

respective velocities for the two elements. When the penetrator can overmatch the first element, the

first integral on the right-hand side of equation (1) is equal to the first element thickness, which is

designated a0. Therefore, the DOP or residual penetration Pr into the backup element is given in a

straightforward way by the second integral (Grace 1993). Rod erosion v - u and target erosion

u (penetration rate) in terms of rod length as the independent variable are given respectively as

v- u = (vs - uo) 1 + P In (2)P (Vs -Uo 0

and 2 S I 1/2

u = uo0 1 + In (3)
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where uo is the initial penetration rate; pp and Pt are the penetrator and target densities, respectively;

and Sp and St are the effective penetrator and target strengths, respectively.

When solving equation (1), penetration into the first element is calculated stepwise using small

increments of rod length as if the element were semi-infinite. The process continues up to the point

where the penetration depth reaches a,. At that point, the final values from the first integral (v2, u2,

and V,) are used to start the penetration process in the second layer. Since equations (3) and (4), as

written, apply to the first element, their use for the second element requires v., uo, and Vo to be

replaced with vj, u,, and V1. Further, appropriate strengths and densities for the corresponding

elements must be included. To check on the validity of dividing the penetration integral into two

parts as shown in equation (1), calculations were made for semi-infinite penetration into RHA/RHA-

and Ti/Ti-layered targets throughout the entire range of first-layer thickness, and expected results

were obtained. Further, accurate penetration depths were obtained for single, semi-infinite targets

of both RHA and Ti alloy.

When using equation (1) for bi-element targets of different materials, Grace and Rupert (1993)

found that the penetration process through the first-layer can be altered substantially from initial

penetration in a semi-infinite target version of the first layer material. The changes are generated by
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(1) overall effects of the proximate interface between target layers of different densities, and

(2) effects of the time-dependent damage mechanism giving rise to a strength loss if the first layer

is a ceramic material. These effects were implemented in the first integral of equation (1) together

with equations (2) and (3) through changes in the strength term (St) for the target (which was

modified to account for time-dependent damage), and changes in the initial penetration rate u0

(which was adjusted to account for the transient and interface reflection).

3.2 Influence of the Proximate Target/Target Interface. Penetration into the first element

was calculated using previous methods (Grace and Rupert 1993) that account for the shock transient,

due to impact at the target front surface and shock wave reflections, due to density and sound

velocity changes across the target bi-element interface. Treating the first element as semi-infinite

produces a penetration process that ignores possible influences, due to the properties of the backup

material. This model uses a simplified version of one-dimensional shock wave propagation to treat

the influence on penetration due to shock reflection from a proximate interface. An upper limit for

the penetration rate is taken to be the particle velocity us associated with a shock wave that is

generated by penetrator impact with element 1. Two well-known relations [equations (4) and (5)]

from the theory of shock wave propagation are as follows:

p = puU, (4)

and

U = c + gu. (5)

In these equations, p is the pressure, U is the shock velocity, and u is the particle velocity

immediately behind the shock wave. Material properties are given by p as density, c as velocity of

sound, and g as a material constant. Applying these two equations to the penetrator/target and bi-

element target interfaces together with appropriate boundary conditions gives the following

expressions used in the current model as

us - vS, (6)
8+Pp/P 1
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and

Ur = (PI/Ps)Ui, (7)

where pp is the rod density, ur is the velocity of material reflected from the interface, and ui is the

incident material velocity. In equations (4) and (5), under simplifications, the sound speeds of the

penetrator and targets are taken to be equal, and the variation of shock speed with particle velocity

has been ignored. Upon impact, the initial penetration rate at the front surface us drops to a quasi-

steady value u. as penetration proceeds to a depth on the order of a penetrator diameter. The model

permits the penetration rate to be increased or reduced from u,. The change has the form

ue = Uo + q (us - u.), (8)

where q (us - u.) represents an increment of velocity change, and uo is the initial penetration rate

given by previous theory [Grace 1993, equation (25)]. The form of q is arbitrary and chosen to

include influences generated by the transient, and the target/target interface is

q k( P2(i a 0121 9
IDI PI

where d is rod diameter, and PI is the DOP into a semi-infinite version of the first-element material.

The last term on the right-hand side of equation (9) allows the correction to decrease as the reflective

wave weakens, due to increased distance to the reflective boundary as a result of increased applique

thicknesses. The ratio of densities across the interface that appears in equation (9) determines the

magnitude of the reflected wave, and the sign change indicates the order of densities (positive when

P2 > p,) (Grace and Rupert 1993; Rupert and Grace 1994). The value for k is chosen so that q can

not exceed q = 1, and the penetration rate of equation (8) can not exceed us. Equations (1), (2), (3),

(8), and (9) give the penetration through the first element and the expected rod length and velocity

to be used as starting values in the calculation for DOP as given by the second integral of

equation (1).
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3.3 Time-Dependent Damage Model for Ceramic Strength Loss. Under impact, the ceramic

material is subjected to compressive stress at the penetrator/target interface. From this interface,

compressive waves travel through the material and reflect from the backing material as compressive

or tensile waves. Curran et al. (1993) and Cort6s et al. (1992) indicate that the strength of the intact

ceramic -ri increases linearly with hydrostatic stress according to

"r = T + ba, (10)

where -ro is an ambient strength, and b is a strengthening coefficient. The strength of fully damaged

or comminuted material trc arises from friction only and increases with hydrostatic stress a as

T = pla. (11)

The strength of the ceramic in a partially damaged state is derived from these two limiting states

through a damage function. Cort6s et al. (1992) explored the use of the following damage function

[equation (12)] to determine the intermediate strength T. In their work, the function was interpreted

as a mass fraction rl of comminuted material within a given volume of material. This function was

T = (1 - 11) "1i + I"T'. (12)

Damage evolution is defined as the rate at which the fraction TI evolves toward complete damage.

The motivation for evolution develops from the applied hydrostatic stress, a, above some initial

level, 00, required for the onset of fracture. The evolution is given by

ii = kio (a -a0 ), (13)

where fl, and hl are initial and subsequent time rates of change in the damage fraction as given by

Cortds et al. (1992). Although damage evolution is a time-dependent phenomena, time was not

explicitly included in their formula since the hydrocode used in their work provided a conditionally
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determined stress-time history for each material cell during penetration. However, time dependence

is included in this report through an explicit a = a (t) function.

The geometric description of the damage model developed by Grace and Rupert (1993) is given

in Figure 6 wherein two process zones are defined. Impact of the penetrator with the target front

surface produces several wave fronts to be propagated into the material. The first process zone (a) is

a manifestation of a subsequent shear wave that defines a region of crazing. Pabst, Steeb, and

Claussen (1978) define this process zone as a region of crack nucleation and subcritical,

discontinuous crack extension. The maximum propagation rate w% of the crack front boundary is

assumed to be equivalent to the maximum individual crack velocity, which is related to the Rayleigh

wave velocity. However, damage may be initiated by the longitudinal wave within the ceramic. The

second process zone (b) is associated with the very highly pressurized region of flow stagnation at

the penetrator-target interface. This comminuted zone of fine ceramic particles appears in front of

the penetrator, and its influence on penetration has been investigated by Wilkins (1978). In general,

the comminuted material has less strength than the intact material. The thickness of this high-

pressure zone is taken to remain constant during penetration and to be on the order of a penetrator

diameter d. Thus, the high-pressure region (front and rear) travels at the penetration rate u. Both

process zone fronts initiate simultaneously at the target front surface upon contact by the penetrator.

Thus, the time lapses for each zone to pass a given point P within the ceramic and lying along the

penetration centerline are

ta (P-d P) (14)
U Wo

and

d (15)
u

where the subscripts refer to process zones (a) and (b), respectively, and d is the diameter of the

penetrator. It is assumed that the damage evolution applies separately to each zone so that

= fioa (Oa - °o) (16)
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Figure 6. Illustration of the Initial Two Process Zones for the Ceramic Damage Model.

and

r b =flob Ob(t) ' (17)

where oa is the overstress taken as constant throughout zone a and o(t) is the stress history of

zone (b). For simplicity, it is assumed that the stress distribution in zone (b) is linear with distance

within the zone and is also therefore linear with time. The stagnation stress (pressure) o, is estimated

from application of Bernoulli's equation at a stagnation point on the nose of the penetrator due to

target flow. Thus,

Sob(t) = o (18)
and t

=1 2 (9as = PtU 2 (19)

Equations (16) and (17) are integrated over the appropriate time intervals to get the damage fractions

r1a and rib. The total damage i1 at a particular point P is the sum of the cumulative damage in both

zones so that

A= foa (a a o)(P d - P + 1. flo d Pt u. (20)12u WO 4
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The damage function equation (20) combines with equation (12) to describe the nominal strength

and the extent of ceramic material damage in the present model. For the ceramics, the nominal

strength used in the model correlates with the ceramic's dynamic shear strength. This differs from

metals, where the model's nominal strength correlates with the metal's dynamic compressive

strength. This difference between metals and ceramics in the model's nominal strength selection

may relate to the metals tendency to fail due to void nucleation and coalescence vs. the ceramic

tendency to fail by means of shear localization. As such, the maximum and minimum shear

strengths possible for the ceramic based on the Griffith (1924) brittle fracture criterion are

"TO = oult / 3, (21)

where at is either the ultimate compressive strength (maximum) or ultimate tensile strength

(minimum). For ceramic material undergoing damage, equations (12) and (21) define St in

equation (3) as the effective stress in the penetration analysis. The damage fraction is computed and

St is adjusted continually during the numerical integration of the first integral in equation (1).

The analysis describes our efforts through 1993 (Grace and Rupert 1993). We now introduce

a third process zone (c) to include the effect of wave reflection at the ceramic/metal interface. The

existence of reflected waves and potential subsequent initiation of damage within ceramic targets

has been experimentally observed by Hauver et al. (1993). The geometric description of the third

process zone is given in Figure 7. At impact, a pressure wave is generated within the ceramic by the

penetrator. Once this wave has passed through the ceramic, a reflection from the ceramic/metal

interface may initiate the third process zone. The time lapse for.third process zone to pass a given

point P is

P d a + _ , (22)
U Co Wo

13
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Figure 7. Illustration of the Addition of Third Process Zone for the Ceramic Damage Model.

where the subscript refers to the process zone (c). The damage evolution of process zone (c) is taken

to be separate, but can contribute to the overall cumulative damage. Thus,

k = foc (uI - Y), (23)

where ac is the over stress taken as a constant throughout zone (c). Equation (23) is integrated over

the appropriate time interval to get the damage function rio. The total damage r! at a particular point

P is the sum of the cumulative damage in all three zones so that equation (20) becomes

P -d oP + d1u+f (a1 0 G)Pd_( ao ' (24)

o1foa(O a 0) u +'4"o bptu O cO ju -- w )4 (24)

The damage function equation (24) combines with equation (12) to describe the shear strength and

the extent of ceramic material damage in the present model when a third process zone is present.

4. The Size Effect and Weibull Distribution

The Weibull distribution was used to model strength variations within the ceramic applique. The

Weibull statistical analysis is based on the weakest link theory (Weibull 1939, 1951), which states
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that failure is initiated by the lowest required stress at the most critical flaw. This phenomenon

yields a size dependance of stress or size effect (McClintock and Argon 1966). In this theory, the

probability of failure F can be related to the strength of a specimen through the two-parameter

Weibull equation (Weibull 1951; Shih 1980)

_f (o)

F =I - e (25)

where m is the Weibull modulus, 0o is a characteristic strength of a unit-volume specimen tested in

uniform tension, and a is the applied stress.

The effective volume KV, or volume of material being tested effectively, is used to predict the

strength distribution of one type or size of specimen from that of another. The effective volume is

a function of the Weibull modulus and the geometric parameters of the specimen being studied. The

effective volume expression can be described analytically for any specimen configuration that

possesses a stress distribution that can also be described analytically. The effective volume can be

derived for any configuration from the equation

KV = 'a)dV, (26)
S(max '

where a is an appropriate expression for the stress distribution, and am.x is the maximum stress. In

the case where the stress distribution cannot be described analytically, the effective volume can be

computed numerically. Once the effective volume has been determined, the following equation can

be used to predict strength levels of equal failure probabilities between specimens of the same

material with different dimensions or geometries:

01 K (K2/_
V2) (27)

G 2 KVI/

where KV1 is the effective volume of the first specimen configuration and KV is the effective

volume of the second (Jadaan et al. 1991). Further, transformation of the control volume from one

probability of failure to an another is accomplished using

15



KV' = KV In (1 - F') (28)
In (1 - F)

where KV' is the new control volume at F' probability of failure (Johnson and Tucker 1989).

For a first-order approximation of the variation in strength within the ceramic applique, a

simplifying assumption was made in regard to the application of the Weibull distribution. It was

assumed that the dynamic strength variations within the applique were proportional to strength

variations within the three-point bending specimens of the same length and width. This allowed the

strength variations to be estimated by combining equations (27) and (28) without solving for the

control volume associated with the penetrator target interaction. This resulted in

In ti(1 - F))±(29

St' = n( 1 ) rS, (29)

where St is the dynamic strength, a ois the applique thickness, and t js the three-point bending

specimen's thickness used in determining the Weibull modulus. Thus, strength levels S, at given

failure probabilities can be calculated for use in the penetration integral of equation (1).

5. Calculated Results

In this section, the previously developed models for the density effect and material damage are

applied to the bi-element targets to first include the ceramic/metal model of Grace and Rupert

(1993); second, the adaption of the Weibull distribution to describe the ceramic size effect; and third,

the addition of the third process zone to complete the description of the upper and lower performance

boundaries. In all cases, striking velocity v. was 1,500 m/s. Basic material properties used in the

initial model calculations are presented in Table 1.

Figure 1 provides a series of model calculations for the aluminaiRHA bi-element target. For this

target, a series of sequential calculations was conducted. First, to represent penetration into an

idealized intact ceramic (undamaged), the nonsteady penetration theory as formulated previously

16



Table 1. Material Properties Used in the Calculations

Property DU Alloy RHA Alumina

Density (g/cm 3) 18.6 7.85 3.90
Nominal Strength (GPa) 1.38 1.06 2.00
Sound Velocity (m/s) NU 5,876 10,700

NOTE: NU - not used.

(Grace 1993) was applied with no modification. S, used in equation (3) was taken as the ceramic's

nominal strength of 2.0 GPa from Cort6s et al. (1993), which falls within the range discussed by

Woodward (1989). The results are analogous to the rule of mixtures as presented in Rupert and

Grace (1993). The second curve represents the addition of the density effect where k was set at 0.4.

This curve is the expected upper performance bound for the alumina when backed by RHA. The

region between curves 1 and 2 represent the predicted performance loss due to the density effect.

Thus, the model suggests that data points lying on the second curve could be the result of the ceramic

being in an intact state during penetration.

In Figure 1, curve 3 includes both the addition of density effect and the damage model to the

calculations. For the damage model, the following constants were used: floa = 5.0 * 10-4 Pa-1 s-I

(Cortes et al. 19 9 2),fiob = 5.0 * 10-6 Pa-1 s-1, ao = 100 MPa (Cortes et al. 1992), oa = 200 MPa, wo =

6,000 m/s (McClintock and Argon 1966), and b = 0.1 and p = 0.37 (Curran et al. 1993). Curve 3

represents a predicted lower performance bound for alumina when backed by RHA. The model

predicts that DOP data for alumina/RHA would fall between curves 2 and 3. The model with the

time-dependent damage functions indicates that the amount of damage increases with ceramic

thickness. Thus, ultimately, the penetration process can transition from a mixed solid/granular flow

to one of pure granular flow.

Figures 8 and 9 provide the next series of model calculations for the alumina/RHA bi-element

target with ceramic "size" effect taken into account. Calculations were made treating the ceramic

layer as (1) intact ceramic with the size effect expressing failure strength in terms of a probabilities,

and (2) the addition of the "density" effect to (1) in Figure 8. Adding the time-dependent damage
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mechanisms to (2) is shown in Figure 9. In all cases, striking velocity v. was 1,500 m/s. The basic

model parameters were not changed from the previous set of calculations with the exception of

strength. Using equation (29), the ceramic strength (St) was set to 2.40 GPa. This corresponds to

setting the ceramic strength to o./'/3for a. = 25.4 mm (the thickness of the compression sample

used to determine the compressive strength) and F' = 0.50. The Weibull parameters used in the

model were provided by Paricio (1996) as m = 12.13, tw, = 1.78 mm, and F = 0.50. The probabilities

considered were F' = 0.95 and F' = 0.05.

The first set of curves in Figure 8 shows the effect of the probability function for 0.95 and 0.05

intact strength on the predicted penetration. The second set of curves in Figure 8 represents the

addition of the density effect on the strength at the two probability levels. Essentially, without the

time-dependent mechanism, it would be expected that 90% of the data would be located between the

two curves representing the intact ceramic with density effect added. In Figure 9 the time-dependent

damage mechanism has been applied to the 0.95 and 0.05 probability levels. The curve at the 0.95

probability with the density effect and time-dependent damage mechanism forms the expected upper

density effect as the upper bound as defimed in prior work (Grace and Rupert 1993). The curve at

the 0.05 is then used to define the lower performance bound for the ceramic response in the DOP

tests (upper curve). Further, the analysis suggests that low ceramic performance at large thicknesses

cannot be explained by the two process zone model with Weibull distribution and density effects

alone. The shape of the lower performance limits indicates a lower value for the coefficient of

friction may be required in the model. If the lower coefficient of friction was used in the time-

dependent strength model with two process zones to match the data more closely, a greater under

prediction of the upper performance bound would occur. Arbitrary adjustments to the strength,

coefficient of fraction and damage rates could result in a closer match to either performance

boundary, but not both.

Figure 10 address the addition of a possible third process zone into the model's calculations. For

these calculations, the coefficient of friction was set at p = 0.145 (Curran et al. 1993). The damage

rate for process zone (a) was equally divided between process zones (a) and (c); fioa = 2.5 *

10-4 Pa-1 s9 and floe = 2.5 * 10-4 Pa-I sý-. All other model parameters remained the same as in the
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previous two process zone model. In this version of the model, the upper performance bound was

defined as the 0.95 probability curve with only process zones (a) and (b) engaged. This would

represent the case of the highest strength and minimum ceramic damage. The lower performance

bound was defined as the 0.05 probability curve with all three process zones contributing to the

damage of the ceramic. This represents the minimum strength and maximum damage.

6. Conclusions

There are several important conclusions to be drawn from this work.

(1) The evaluation of target materials using DOP testing should take into account the physical

phenomena regarding material damage mechanisms and target interaction effects to include

the shock-induced transient and wave reflection from target interfaces. Penetration models

are needed to account for these effects and to separate the individual contributions. As an

example, the current modeling effort explicitly illustrates that the density of the backup

element is responsible for a significant target interaction effect, and this can alter ceramic

performance substantially.

(2) The modeling of the inherent scatter in ceramic DOP test results has been addressed by

accounting for the "size" effect and the intermittent presence of a third process zone. Other

factors, such as the scatter introduced by variations in the penetrator (impact velocity,

Geometry, strength, etc.) and/or the precision in target fabrication, were not addressed. The

ceramic size effect is effectively modeled by adjusting the ceramic's nominal strength using

the weakest link theory in terms of the Weibull distribution and measured parameters for the

ceramic. The presence of or lack of the third process zone directly effects the scatter

observed within the ceramic's performance substantially. As an example, in the current

modeling effort, it can be concluded that:
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- ceramics modeled with higher Weibull modulus will inheritly predict less scatter in

ballistic performance (assuming everything else is equal) as a result of the lower strength

variation in the ceramic,

* ceramics targets modeled without an intermittent third process zone will predict less

scatter in ballistic performance (assuming everything else is equal),

* ceramics targets modeled without a third process zone will predict a superior upper

performance limit compared to ceramic targets modeled with a third process zone

(assuming everything else is equal), and

• ceramics targets modeled with a third process zone will predict a degraded lower

performance limit compared to ceramic targets modeled without a third process zone

(assuming everything else is equal).

(3) Any analysis used in the DOP tests for determining the performance potential of ceramic

materials (or any material) under ballistic impact must go beyond recording the residual

penetration in the second target element as a function of first element's thickness or areal

density for a given impact velocity and penetrator. The analysis needs to be more detailed

to determine the actual potential of the ceramic eliminating potential bias introduced through

such choices as target geometry and the selection of second target element. With the more

indepth analysis, the results from DOP tests become more relevant in predicting actual

performance of the ceramic (or any material) in realistic armor systems. The model

presented in this report is felt to provide a major step toward accomplishing the link between

DOP tests and actual armor performance.
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